LES DERIVEES (J. Mahboub juin 2017)

Exercice 1

1. Soit f la fonction définie par la relation : $f(x) = x^2 - 3 \cdot x + 2$

Déterminer, pour $h \in \mathbb{R}$, un expression simplifiée de

2. Soit g la fonction définie par la relation :

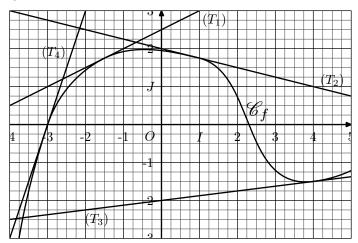
$$g(x) = \frac{\sqrt{2x - 1} - 3}{x - 5}$$

Etablir , pour tout
$$h\!\in\!\mathbb{R}^*,$$
 l'égalité :
$$g(h\!+\!5) = \frac{2}{\sqrt{2h+9}+3}$$

Correction 1

Exercice 2

Ci-dessous est représentée, dans le repère (O; I; J), la courbe \mathcal{C}_f et quatre de ses tangentes :



1. La droite (T_1) s'appelle :

"La tangente à la courbe \mathscr{C}_f au point d'abscisse -1,5"

Nommez de même les trois autres droites.

2. Déterminer l'équation réduite de chacune de ces quatres tangentes.

Correction 2

1. Voici les intitulés possibles des trois autres droites :

ullet (T_2) est la tangente à la courbe \mathscr{C}_f au point d'abscisse

• (T_3) est la tangente à la courbe \mathscr{C}_f au point d'abscisse

 \bullet (T_4) est la tangente à la courbe \mathscr{C}_f au point d'abscisse

Déterminons les équations réduites de ces quatres tangentes.

• La droite (T_1) passe par les points :

$$A(-3;1)$$
 ; $B(0;2,5)$

Elle admet pour coefficient directeur :
$$a = \frac{y_B - y_A}{x_B - x_A} = \frac{2,5-1}{0-(-3)} = \frac{1,5}{3} = \frac{3}{6} = \frac{1}{2}$$

Ainsi, son équation réduit a pour expression :

1. On a les transformations algébriques suivantes : $f(1+h) = (1+h)^2 - 3 \cdot (1+h) + 2$ $= 1 + 2h + h^2 - 3 - 3h + 2 = h^2 - h$

2. On a les transformations algébriques suivantes :

$$g(h+5) = \frac{\sqrt{2(h+5)-1}-3}{(h+5)-5} = \frac{\sqrt{2h+10-1}-3}{h}$$

$$= \frac{\sqrt{2h+9}-3}{h} = \frac{(\sqrt{2h+9}-3)(\sqrt{2h+9}+3)}{h \cdot (\sqrt{2h+9}+3)}$$

$$= \frac{(\sqrt{2h+9})^2 - 3^2}{h \cdot (\sqrt{2h+9}+3)} = \frac{2h+9-9}{h \cdot (\sqrt{2h+9}+3)}$$

$$= \frac{2h}{h \cdot (\sqrt{2h+9}+3)} = \frac{2}{\sqrt{2h+9}+3}$$

$$y = \frac{1}{2} \cdot x + b$$

Les coordonnées du point B vérifient cette équation :

$$2{,}5=\frac{1}{2}{\times}0+b$$

b=2.5 La droite (T_1) admet pour équation réduite :

$$(T_1): y = \frac{1}{2} \cdot x + \frac{5}{2}$$

• La droite (T_2) passe par les points :

$$A(0;2)$$
 ; $B(4;1)$

Elle admet pour coefficient directeur :
$$a = \frac{y_B - y_A}{x_B - x_A} = \frac{1-2}{4-0} = \frac{-1}{4} = -\frac{1}{4}$$
 Ainsi, son équation réduit a pour expression :

$$y = -\frac{1}{4} \cdot x + b$$

Les coordonnées du point A vérifient cette équation :

$$2 = -\frac{1}{4} \times 0 + b$$

b=2 La droite (T_2) admet pour équation réduite :

$$(T_2): y = -\frac{1}{4} \cdot x + 2$$

• La droite (T_3) passe par les points :

$$A(0;-2)$$
 ; $B(4;-1,5)$

Elle admet pour coefficient directeur :
$$a = \frac{y_B - y_A}{x_B - x_A} = \frac{-1,5 - (-2)}{4 - 0} = \frac{0,5}{4} = \frac{1}{8}$$
 Ainsi, son équation réduit a pour expression :

$$y = \frac{1}{8} \cdot x + b$$

Les coordonnées du point A vérifient cette équation :

$$-2 = \frac{1}{8} \times 0 + b$$

 $-2 = \frac{1}{8} \times 0 + b$ La droite (T_3) admet pour équation réduite :

$$(T_3): y = \frac{1}{8} \cdot x - 2$$

• La droite (T_4) passe par les points :

$$A(-2;3)$$
 ; $B(-3;0)$

Elle admet pour coefficient directeur :
$$a = \frac{y_B - y_A}{x_B - x_A} = \frac{0 - 3}{-3 - (-2)} = \frac{-3}{-1} = 3$$
 Ainsi, son équation réduit a pour expression :

 $y = 3 \cdot x + b$

Les coordonnées du point B vérifient cette équation :

$$0 = 3 \times -3 + b$$

$$0 = -9 + b$$

$$b = 9$$

3. a. Donnons l'expression développée et réduite des deux membres de l'égalité :

La droite (T_4) admet pour équation réduite :

 $(T_4): y = 3 \cdot x + 9$

• $f(x) + x = (2x^3 - 3x^2 - x + 1) = 2x^3 - 3x^2 + 1$

•
$$(x-1)(a \cdot x^2 + b \cdot x + c)$$

= $(a \cdot x^3 + b \cdot x^2 + c \cdot x) - (a \cdot x^2 + b \cdot x + c)$
= $a \cdot x^3 + b \cdot x^2 + c \cdot x - a \cdot x^2 - b \cdot x - c$
= $a \cdot x^3 + (b-a) \cdot x^2 + (c-b) - c$

Par identification des mônomes de même degré de ces deux formes développées et réduites, on obtient le système d'équations suivant :

$$\begin{cases} a = 2 \\ b - a = -3 \\ c - b = 0 \\ -c = 1 \end{cases}$$

On vérifie facilement que les valeurs de a, b et c solutions de ce système sont :

$$a = 2$$
 ; $b = -1$; $c = -1$

Ainsi, on obtient la factorisation suivante :

$$f(x) + x = (x-1)(2 \cdot x^2 - x - 1)$$

b. Les points d'intersection de la courbe \mathscr{C}_f avec la droite (T) doivent avoir leur abscisse solution de l'équation :

$$f(x) = -x$$
$$f(x) + x = 0$$

D'après la question a., on a :

$$(x-1)\cdot(2\cdot x^2 - x - 1) = 0$$

Or, un produit est nul si, et seulement si, au moins un de ses facteurs est nul. On obtient les deux équations suivantes :

$$\begin{array}{c|c} x - 1 = 0 \\ x = 1 \end{array} \mid \begin{array}{c} 2x^2 - x - 1 = 0 \end{array}$$

Etudions la seconde équation.

Le membre de gauche de cette équation est un polynôme du second degré dont le discriminant a pour valour :

$$\Delta = b^2 - 4 \cdot a \cdot c = (-1)^2 - 4 \times 2 \times (-1) = 1 + 8 = 9$$

On a la simplification : $\sqrt{\Delta} = \sqrt{9} = 3$

Le discriminant étant strictement positif, on en déduit que cette équation admet les deux solutions suivantes :

the cette equation admer ies deax solution
$$x_1 = \frac{-b - \sqrt{\Delta}}{2 \cdot a} \qquad x_2 = \frac{-b + \sqrt{\Delta}}{2 \cdot a}$$

$$= \frac{-(-1) - 3}{2 \times 2} \qquad = \frac{-(-1) + 3}{2 \times 2}$$

$$= \frac{-2}{4} \qquad = \frac{4}{4}$$

$$= -\frac{1}{2} \qquad = 1$$

Ainsi, cette équation admet deux solutions :

$$\mathcal{S} = \left\{ -\frac{1}{2} \,;\, 1 \right\}$$

Déterminons les coordonnées des deux points de C_f admettant $-\frac{1}{2}$ et 1 pour abscisse :

• Pour
$$x = -\frac{1}{2}$$
:

Exercice 3

On considère la fonction f dont l'image d'un nombre x est définie par la relation :

$$f(x) = 2x^3 - 3x^2 - x + 1$$

Dans le plan muni d'un repère (O; I; J), on note \mathscr{C}_f la courbe représentative de la fonction f. On note (T) la tangente à la courbe \mathscr{C}_f au point d'abscisse 1.

- 1. a. Pour tout nombre réel h non-nul, établir l'identité : $\frac{f(1+h)-f(1)}{h}=2h^2+3h-1$
 - b. Quel est le coefficient directeur de la tangente (T)? Justifier votre démarche.
- 2. Déterminer l'équation de la tangente (T) à la courbe \mathscr{C}_f .
- 3. a. Déterminer la valeur des réels a, b et c réalisant l'identité :

$$f(x) + x = (x-1) \cdot (a \cdot x^2 + b \cdot x + c)$$

b. En déduire les coordonnées des points d'intersection de la courbe \mathscr{C}_f avec la tangente (T).

Correction 3

1. a. On a les transformations algébriques suivantes :

$$\begin{split} &\frac{f(1+h)-f(1)}{h} \\ &= \frac{\left[2(1+h)^3-3(1+h)^2-(1+h)+1\right]-\left(2\times 1^3-3\times 1^2-1+1\right)}{h} \\ &= \frac{2(1+h)(1+h)^2-3(1+2h+h^2)-1-h+1-(-1)}{h} \\ &= \frac{(2+2h)(1+2h+h^2)-3-6h-3h^2-h+1}{h} \\ &= \frac{\left(2+4h+2h^2+2h+4h^2+2h^3\right)-3h^2-7h-2}{h} \\ &= \frac{2h^3+3h^2-h}{h} = \frac{h\cdot \left(2h^2+3h-1\right)}{h} = 2h^2+3h-1 \end{split}$$

b. Le coefficient directeur de la tangente à la courbe \mathscr{C}_f au point d'abscisse 1 est le nombre dérivée de la fonction f en 1. Se valour est :

tion
$$f$$
 en 1. Sa valeur est :
$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} 2h^2 + 3h - 1 = -1$$

Ainsi, la tangente (T) a pour coefficient directeur -1.

2. La tangente (T) ayant -1 pour coefficient, son équation réduite est de la forme :

$$y = -x + b$$
 où $b \in \mathbb{R}$

Le point de contact (1;-1) est un point de la courbe \mathscr{C}_f et de la tangente (T). Ses coordonnées vérifient l'équation réduite de (T):

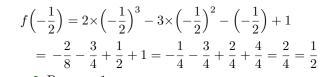
$$-1 = -1 \times 1 + b$$

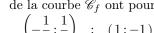
$$b = -1 + 1$$

$$b = 0$$

La tangente (T) admet pour équation réduite :

$$y = -x$$





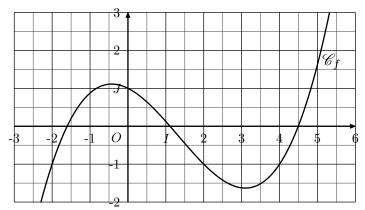
=2-3-1+1=-1Ainsi, les deux poitns d'intersection de la droite (T) et de la courbe \mathcal{C}_f ont pour coordonnées :

$$\left(-\frac{1}{2};\frac{1}{2}\right) \quad ; \quad (1;-1)$$

Exercice 4

On considère la fonction f dont l'image de x est définie par

$$f(x) = \frac{1}{8}x^3 - \frac{1}{2}x^2 - \frac{1}{2}x + 1$$



On note \mathcal{C}_f la courbe représentative de la fonction f dans un repère orthonormé.

- 1. Donner l'expression de la fonction f' dérivée de la fonc-
- On considère la tangente (T) à la courbe \mathscr{C}_f au point d'abscisse 2.
 - a. Donner la valeur du coefficient directeur de (T).
 - b. Déterminer l'équation réduite de la tangente (T).
 - c. Dans le repère ci-dessous, tracer la tangente (T).
- 3. On considère la droite (d) admettant l'équation réduite : (d): y = -x + 1

Déterminer les coordonnées des points d'intersection de la droite (d) et de la courbe \mathcal{C}_f .

Correction 4

1. L'expression de la fonction f étant donnée sous la forme d'une somme, on en déduit facilement l'expression de sa

erivee:

$$f'(x) = \frac{1}{8} \times (3x^2) - \frac{1}{2} \times (2x) - \frac{1}{2}$$

$$= \frac{3}{8}x^2 - x - \frac{1}{2}$$

a. Le coefficient directeur de la tangente (T) à la courbe \mathscr{C}_f au point d'abscisse 2 est la valeur du nombre

dérivée de la fonction f en 2: $f'(2) = \frac{3}{8} \times 2^2 - 2 - \frac{1}{2} = \frac{3}{2} - \frac{4}{2} - \frac{1}{2} = -1$

b. La droite (T) ayant pour coefficient directeur, son équation réduite admet pour expression :

 $(T): y = -x + b \quad \text{où } b \in \mathbb{R}.$

L'image de 2 par la fonction
$$f$$
 a pour valeur :
$$f(2) = \frac{1}{8} \times 2^3 - \frac{1}{2} \times 2^2 - \frac{1}{2} \times 2 + 1$$

 $f(1) = 2 \times 1^3 - 3 \times 1^2 - 1 + 1$

On en déduit que le point de coordonnées A(2;-1)est un point de la courbe \mathscr{C}_f ; étant le point de contact de la tangente (T) avec la courbe \mathscr{C}_f , on en déduit que le point A appartient aussi à la droite (T).

Ainsi, les coordonnées du point A vérifient l'équation réduite de la tangente (T):

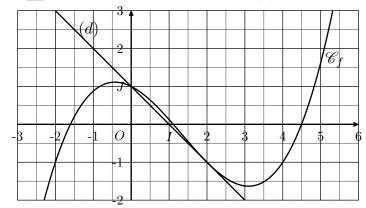
$$y = -x + b$$

$$-1 = -2 + b$$

$$-1 + 2 = b$$

Ainsi, la droite (T) admet pour équation réduite : y = -x + 1

c. Voici la représentation de la droite (T):



3. Les abscisses des points d'intersections de la courbe \mathscr{C}_f et de la droite (d) vérifient l'équation :

$$f(x) = -x + 1$$

$$\frac{1}{8}x^3 - \frac{1}{2}x^2 - \frac{1}{2}x + 1 = -x + 1$$

Multiplions par 8 les deux membres de cette équation :

$$x^{3} - 4x^{2} - 4x + 8 = -8x + 8$$

$$x^{3} - 4x^{2} - 4x + 8x = 0$$

$$x^{3} - 4x^{2} + 4x = 0$$

$$x \cdot (x^{2} - 4x + 4) = 0$$

En reconnaissant la seconde identité remarquable :

$$x \cdot (x-2)^2 = 0$$

Un produit est nul si, et seulement si, au moins un de ses facteurs est nul.

Cette équation admet pour ensemble de solution :

$$S = \{0; 2\}$$

Ainsi, la courbe \mathscr{C}_f et la droite (d) admettent deux points d'intersection ayant pour abscisse 0 et 1. Ces deux points d'intersection ont pour coordonnées :

$$A(0;1)$$
 ; $B(2;-1)$

Exercice 5

Soit f définie sur \mathbb{R} par la relation : $f(x) = 4x^2 - 4x - 3$

- 1. Calculer le nombre dérivé de la fonction f en 2.
- Déterminer l'équation de la tangente à la courbe \mathscr{C}_f au point d'abscisse 2.

Correction 5

1. On a:

$$f(2) = 4 \times 2^2 - 4 \times 2 - 3 = 4 \times 4 - 8 - 3 = 16 - 8 - 3 = 5$$

On a la transformation suivante :

$$\begin{split} \frac{f(2+h) - f(2)}{h} &= \frac{\left[4 \cdot (2+h)^2 - 4 \cdot (2+h) - 3\right] - 5}{h} \\ &= \frac{4 \cdot (4+4 \cdot h + h^2) - 8 - 4 \cdot h - 8}{h} \\ &= \frac{16 + 16 \cdot h + 4 \cdot h^2 - 8 - 4 \cdot h - 8}{h} \\ &= \frac{12 \cdot h + 4 \cdot h^2}{h} = 12 + 4 \cdot h \end{split}$$

On obtient ainsi, la limite suivante :

$$f'(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} 12 + 4 \cdot h = 12$$

2. L'équation réduite de la tangente à la courbe \mathscr{C}_f est obtenue à l'aide de la formule :

$$y = f'(a) \cdot (x - a) + f(a)$$

$$y = f'(2) \cdot (x - 2) + f(2)$$

$$y = 12 \cdot (x - 2) + 5$$

$$y = 12 \cdot x - 24 + 5$$

$$y = 12 \cdot x - 19$$

Exercice 6

On souhaite déterminer les expressions des dérivées des fonctions suivantes :

$$f: x \longmapsto (3x^2 + 3x)(2x + 2) \quad ; \quad g: x \longmapsto (2x^2 + 1)\sqrt{x}$$
$$h: x \longmapsto \frac{1}{x} \cdot (3 - x^2) \qquad \qquad ; \quad j: x \longmapsto \frac{2}{x} \cdot \sqrt{x}$$

1. L'expression de chacune de ces fonctions est donnée sous la forme d'un produit $u \cdot v$. Compléter le tableau cidessous afin d'identifier les deux facteurs de ce produit et leur dérivée respective.

	u(x)	v(x)	u'(x)	v'(x)
f(x)				
g(x)				
h(x)				
j(x)				

2. En utilisant la formule de dérivation d'un produit :

$$(u \cdot v)' = u' \cdot v + u \cdot v'$$

Etablir que ces fonctions admettent pour dérivée les fonctions ci-dessous :

$$f': x \longmapsto 18x^2 + 24x + 6 \quad ; \quad g': x \longmapsto \frac{10x^2 + 1}{2\sqrt{x}}$$

$$h': x \longmapsto \frac{-x^2 - 3}{x^2}$$
 ; $j': x \longmapsto -\frac{1}{x \cdot \sqrt{x}}$

Correction 6

1. L'expression de chacune de ces fonctions est donnée sous la forme d'un produit $u \cdot v$. Compléter le tableau cidessous afin d'identifier les deux facteurs de ce produit et leur dérivée respective.

	u(x)	v(x)	u'(x)	v'(x)
f(x)	$3x^2 + 3x$	2x+2	6x + 3	2
g(x)	$2x^2 + 1$	\sqrt{x}	4x	$\frac{1}{2\sqrt{x}}$
h(x)	$\frac{1}{x}$	$3 - x^2$	$-\frac{1}{x^2}$	-2x
j(x)	$\frac{2}{x}$	\sqrt{x}	$-\frac{2}{x^2}$	$\frac{1}{2\sqrt{x}}$

2. a. Avec les identifications faites à la question précédente et la formule de dérivation d'un produit, on obtient l'expression de la fonction dérivée f':

$$f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x)$$

$$= (6x + 3)(2x + 2) + (3x^2 + 3x) \times 2$$

$$= 12x^2 + 12x + 6x + 6 + 6x^2 + 6x$$

$$= 18x^2 + 24x + 6$$

b. Avec les identifications faites à la question précédente et la formule de dérivation d'un produit, on obtient l'expression de la fonction dérivée f':

$$g'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x)$$

$$= 4x\sqrt{x} + (2x^2 + 1) \cdot \frac{1}{2\sqrt{x}}$$

$$= \frac{4x\sqrt{x} \times 2\sqrt{x}}{2\sqrt{x}} + \frac{2x^2 + 1}{2\sqrt{x}}$$

$$= \frac{8x^2 + (2x^2 + 1)}{2\sqrt{x}} = \frac{10x^2 + 1}{2\sqrt{x}}$$

c. Avec les identifications faites à la question précédente et la formule de dérivation d'un produit, on obtient l'expression de la fonction dérivée f':

$$\begin{split} h'(x) &= u'(x) \cdot v(x) + u(x) \cdot v'(x) \\ &= -\frac{1}{x^2} \cdot (3 - x^2) + \frac{1}{x} \cdot (-2x) = \frac{-(3 - x^2)}{x^2} - 2 \\ &= \frac{-3 + x^2}{x^2} - \frac{2x^2}{x^2} = \frac{-3 + x^2 - 2x^2}{x^2} = \frac{-x^2 - 3}{x^2} \end{split}$$

d. Avec les identifications faites à la question précédente et la formule de dérivation d'un produit, on obtient l'expression de la fonction dérivée f':

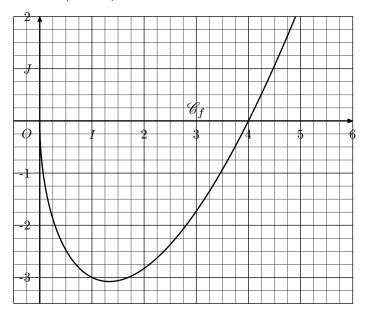
$$\begin{split} j'(x) &= u'(x) \cdot v(x) + u(x) \cdot v'(x) \\ &= -\frac{2}{x^2} \cdot \sqrt{x} + \frac{2}{x} \times \frac{1}{2\sqrt{x}} = \frac{-2\sqrt{x}}{x^2} + \frac{1}{x\sqrt{x}} \\ &= \frac{-2\sqrt{x} \times \sqrt{x}}{x^2 \cdot \sqrt{x}} + \frac{x}{x^2 \sqrt{x}} \\ &= \frac{-2x + x}{x^2 \cdot \sqrt{x}} = \frac{-x}{x^2 \cdot \sqrt{x}} = \frac{-1}{x \cdot \sqrt{x}} \end{split}$$

Exercice 7

On considère la fonction f définie sur \mathbb{R}_+ par la relation :

$$f(x) = (x-4)\sqrt{x}$$

La courbe \mathcal{C}_f représentative de la fonction f est donnée dans le repère (O; I; J) orthonormé :



- 1. a. Déterminer l'expression de la fonction f' dérivée de la fonction f.
 - b. Déterminer l'image et le nombre dérivé de la fonction f en 4.
 - c. Déterminer l'équation réduite de la tangente (T_1) à la courbe \mathcal{C}_f au point d'abscisse 4.
 - d. Tracer la tangente (T_1) .
- a. Déterminer l'équation réduite de la tangente (T_2) à la courbe \mathcal{C}_f au point d'abscisse 1.
 - b. Tracer la tangente (T_2) .

Correction 7

a. L'expression de la fonction f est donnée sous la forme du produit des deux fonctions u et v définies

$$u(x) = x - 4 \quad ; \quad v(x) = \sqrt{x}$$

$$u(x) = x - 4$$
; $v(x) = \sqrt{x}$
qui admettent pour dérivées:
 $u'(x) = 1$; $v'(x) = \frac{1}{2\sqrt{x}}$

La formule de dérivation d'un produit permet d'obtenir l'expression de la fonction f':

$$f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x) = 1 \times \sqrt{x} + (x - 4) \cdot \frac{1}{2\sqrt{x}}$$
$$= \sqrt{x} + \frac{x - 4}{2\sqrt{x}} = \frac{\sqrt{x} \cdot 2\sqrt{x}}{2\sqrt{x}} + \frac{x - 4}{2\sqrt{x}} = \frac{2x}{2\sqrt{x}} + \frac{x - 4}{2\sqrt{x}}$$

$$= \frac{2x + (x - 4)}{2\sqrt{x}} = \frac{3x - 4}{2\sqrt{x}}$$

- b. Voici les deux valeurs demandées :
 - $f(4) = (4-4) \cdot \sqrt{4} = 0 \times 2 = 0$

•
$$f'(4) = \frac{3 \times 4 - 4}{2\sqrt{4}} = \frac{12 - 4}{2 \times 2} = \frac{8}{4} = 2$$

- c. On en déduit l'équation réduite de la tangente (T_1) : $y = f'(4) \cdot (x-4) + f(4)$ $y = 2 \cdot (x - 4) + 0$ y = 2x - 8
- a. On a les deux valeurs particulières suivantes :

•
$$f(1) = (1-4) \cdot \sqrt{1} = -3 \times 1 = -3$$

•
$$f'(1) = \frac{3 \times 1 - 4}{2\sqrt{1}} = \frac{3 - 4}{2} = -\frac{1}{2}$$

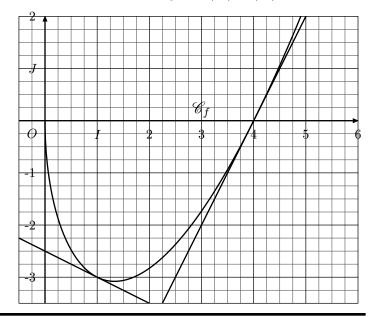
On en déduit l'équation réduite de la tangente (T_2) : $y = f'(1) \cdot (x-1) + f(1)$

$$y = -\frac{1}{2}(x-1) + (-3)$$

$$y = -\frac{1}{2}x + \frac{1}{2} - 3$$

$$y = -\frac{1}{2}x - \frac{5}{2}$$

Voici le tracé des deux tangentes (T_1) et (T_2) :



Exercice 8

On souhaite déterminer les expressions des dérivées des fonc-

f:
$$x \mapsto \frac{3-2x}{x+1}$$
 ; $g: x \mapsto \frac{x^2+4x-1}{2x-1}$

$$h: x \longmapsto \frac{3}{2-x}$$
 ; $j: x \longmapsto \frac{\sqrt{x}}{x+1}$

1. L'expression de chacune de ces fonctions est donnée sous la forme d'un produit $\frac{u}{a}$. Compléter le tableau ci-dessous afin d'identifier le numérateur et le dénominateur de ce quotient et leurs dérivées respectives.

	u(x)	v(x)	u'(x)	v'(x)
f(x)				
g(x)				
h(x)				
j(x)				

2. En utilisant la formule de dérivation d'un produit :

$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$$

 $\left(\frac{u}{v}\right)'=\frac{u'\cdot v-u\cdot v'}{v^2}$ Etablir que ces fonctions admettent pour dérivée les fonctions ci-dessous:

$$f' \colon x \longmapsto -\frac{5}{(x+1)^2} \quad ; \quad g' \colon x \longmapsto \frac{2x^2 - 2x - 2}{(2x-1)^2}$$

$$h': x \longmapsto \frac{3}{(x-2)^2}$$
 ; $j': x \longmapsto \frac{1-x}{2(x+1)^2 \cdot \sqrt{x}}$

Correction 8

1. Par identification du numérateur et dénominateur de chaque quotient, voici le tableau complété:

	u(x)	v(x)	u'(x)	v'(x)
f(x)	3-2x	x + 1	-2	1
g(x)	$x^2 + 4x - 1$	2x-1	2x+4	2
h(x)	3	2-x	0	-1
j(x)	\sqrt{x}	x+1	$\frac{1}{2\sqrt{x}}$	1

a. La formule de dérivation d'un quotient permet d'obtenir l'expression de la fonction f':

$$f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{\left[v(x)\right]^2} = \frac{-2 \cdot (x+1) - (3-2x) \times 1}{(x+1)^2}$$
$$= \frac{-2x - 2 - 3 + 2x}{(x+1)^2} = \frac{-5}{(x+1)^2}$$

b. La formule de dérivation d'un quotient permet d'obtenir l'expression de la fonction g':

$$\begin{split} g'(x) &= \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{\left[v(x)\right]^2} \\ &= \frac{(2x+4)(2x-1) - (x^2+4x-1) \times 2}{(2x-1)^2} \\ &= \frac{(4x^2 - 2x + 8x - 4) - (2x^2 + 8x - 2)}{(2x-1)^2} \\ &= \frac{4x^2 - 2x + 8x - 4 - 2x^2 - 8x + 2}{(2x-1)^2} = \frac{2x^2 - 2x - 2}{(2x-1)^2} \end{split}$$

c. La formule de dérivation d'un quotient permet d'obtenir l'expression de la fonction h':

$$h'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{\left[v(x)\right]^2} = \frac{0 \times (2 - x) - 3 \times (-1)}{(2 - x)^2}$$
$$= \frac{3}{(2 - x)^2}$$

d. La formule de dérivation d'un quotient permet d'obtenir l'expression de la fonction j':

$$j'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{\left[v(x)\right]^2} = \frac{\frac{1}{2\sqrt{x}} \cdot (x+1) - \sqrt{x} \times 1}{(x+1)^2}$$

$$= \frac{\frac{x+1}{2\sqrt{x}} - \frac{\sqrt{x} \times 2\sqrt{x}}{2\sqrt{x}}}{(x+1)^2} = \frac{\frac{x+1}{2\sqrt{x}} - \frac{\sqrt{x} \times 2\sqrt{x}}{2\sqrt{x}}}{(x+1)^2}$$

$$= \frac{\frac{x+1-2x}{2\sqrt{x}}}{(x+1)^2} = \frac{\frac{-x+1}{2\sqrt{x}}}{(x+1)^2} = \frac{-x+1}{2\sqrt{x}} \times \frac{1}{(x+1)^2}$$

$$= \frac{-x+1}{2\sqrt{x} \cdot (x+1)^2}$$